| 书名 | 机器学习中的稀疏性:一种信息提取的现代方法 |
| 分类 | 教育考试-考试-计算机类 |
| 作者 | 冯思为 |
| 出版社 | 苏州大学出版社 |
| 下载 | 抱歉,不提供下载,请购买正版图书。 |
| 简介 | 内容推荐 本书以信息选择为视角,全面介绍了稀疏性在机器学习中的应用。通过系统性的讲解,读者能够深入理解信息选择对机器学习算法性能的重要性以及基于稀疏性的信息选择方法。 目录 CHAPTER 1 INTRODUCTION 1.1 Feature Selection 1.2 Transfer Learning 1.3 Outline CHAPTER 2 BACKGROUND 2.1 Notations 2.2 Single-Layer Autoencoder 2.3 Long-Short-Term Memory Network 2.4 Sparse Learning-Based Unsupervised Feature Selection 2.5 Self-Taught Learning 2.6 Few-Shot Learning 2.7 Hyperspectral Signal Analysis 2.8 Human Activity Recognition CHAPTER 3 FEATURE SELECTION 3.1 Vertical Federated Learning-Based Supervised Feature Selection 3.2 Supervised Hyperspectral Band Selection 3.3 Unsupervised Feature Selection with Data Structure Preservation CHAPTER 4 TRANSFER LEARNING 4.1 Graph and Autoencoder-Based Self-Taught Learning 4.2 Few-Shot Learning-Based Cross-Domain Human Activity Recognition BIBLIOGRAPHY |
| 随便看 |
|
Fahrenheit英汉词典电子书栏目提供海量电子书在线免费阅读及下载。