斯坦博格编著的《有限群的表示论(英文版)》是一部为大学高年级本科生和低年级研究生编写的教科书,内容主要涉及群表示论的各个方面。阅读本书所需背景知识包括线性代数,群论、环论基础知识,书中有意省略模理论,Wedderburn理论和张量积等内容,取而代之的加入离散傅里叶分析。
| 书名 | 有限群的表示论(英文版) |
| 分类 | 科学技术-自然科学-数学 |
| 作者 | |
| 出版社 | 世界图书出版公司 |
| 下载 | 抱歉,不提供下载,请购买正版图书。 |
| 简介 | 编辑推荐 斯坦博格编著的《有限群的表示论(英文版)》是一部为大学高年级本科生和低年级研究生编写的教科书,内容主要涉及群表示论的各个方面。阅读本书所需背景知识包括线性代数,群论、环论基础知识,书中有意省略模理论,Wedderburn理论和张量积等内容,取而代之的加入离散傅里叶分析。 目录 1 Introduction 2 Review of Linear Algebra 2.1 Basic Definitions and Notation 2.2 Complex Inner Product Spaces 2.3 Further Notions from Linear Algebra 3 Group Representations 3.1 Basic Definitions and First Examples 3.2 Maschke's Theorem and Complete Reducibility 4 Character Theory and the Orthogonality Relations 4.1 Morphisms of Representations 4.2 The Orthogonality Relations 4.3 Characters and Class Functions 4.4 The Regular Representation 4.5 Representations of Abelian Groups 5 Fourier Analysis on Finite Groups 5.1 Periodic Functions on Cyclic Groups 5.2 The Convolution Product 5.3 Fourier Analysis on Finite Abelian Groups 5.4 An Application to Graph Theory 5.5 Fourier Analysis on Non-abelian Groups 6 Burnside's Theorem 6.1 A Little Number Theory 6.2 The Dimension Theorem 6.3 Burnside's Theorem 7 Group Actions and Permutation Representations 7.1 Group Actions 7.2 Permutation Representations 7.3 The Centralizer Algebra and Gelfand Pairs 8 Induced Representations 8.1 Induced Characters and Frobenius Reciprocity 8.2 Induced Representations 8.3 Mackey's Irreducibility Criterion 9 Another Theorem of Burnside 9.1 Conjugate Representations 10 Representation Theory of the Symmetric Group 10.1 Partitions and Tableaux 10.2 Constructing the Irreducible Representations 11 Probability and Random Walks on Groups 11.1 Probabilities on Groups 11.2 Random Walks on Finite Groups 11.3 Card Shuffling 11.3.1 The Riffle Shuffle 11.4 The Spectrum and the Upper Bound Lemma References Index |
| 随便看 |
|
Fahrenheit英汉词典电子书栏目提供海量电子书在线免费阅读及下载。